Prenatal Exposure to MAM Impairs mPFC and Hippocampal Inhibitory Function in Mice during Adolescence and Adulthood
Neurodevelopmental abnormalities are considered to be one of the important causes of schizophrenia. The offspring of methylazoxymethanol acetate (MAM)–exposed mice are recognized for the dysregulation of neurodevelopment and are well-characterized with schizophrenia-like phenotypes. However, the inhibition-related properties of the medial prefrontal cortex (mPFC) and hippocampus throughout adolescence and adulthood have not been systematically elucidated. In this study, both 10 and 15 mg/kg MAM-exposed mice exhibited schizophrenia-related phenotypes in both adolescence and adulthood, including spontaneous locomotion hyperactivity and deficits in prepulse inhibition. We observed that there was an obvious parvalbumin (PV) loss in the mPFC and hippocampus of MAM-exposed mice, extending from adolescence to adulthood. Moreover, the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons at mPFC and hippocampus was significantly dampened in the 10 and 15 mg/kg