Age against the machine—susceptibility of large language models to cognitive impairment: cross sectional analysis
Objective To evaluate the cognitive abilities of the leading large language models and identify their susceptibility to cognitive impairment, using the Montreal Cognitive Assessment (MoCA) and additional tests. Design Cross sectional analysis. Setting Online interaction with large language models via text based prompts. Participants Publicly available large language models, or “chatbots”: ChatGPT versions 4 and 4o (developed by OpenAI), Claude 3.5 “Sonnet” (developed by Anthropic), and Gemini versions 1 and 1.5 (developed by Alphabet). Assessments The MoCA test (version 8.1) was administered to the leading large language models with instructions identical to those given to human patients. Scoring followed official guidelines and was evaluated by a practising neurologist. Additional assessments included the Navon figure, cookie theft picture, Poppelreuter figure, and Stroop test. Main outcome measures MoCA scores, performance in visuospatial/executive tasks, and Stroop test results. Res