-
Mashup Score: 0
Iodine deficiency-induced goiter continues to be a global public health concern, with varying manifestations based on geography, patient’s age, and sex. To gain insights into clinical occurrences, a retrospective study analyzed medical records from patients with iodine deficiency-induced goiter or thyroid cancer who underwent surgery at the Community Hospital in Riehen, Switzerland, between 1929 and 1989. Despite today’s adequate iodine supplementation, a significant risk for iodine-independent goiter remains in Switzerland, suggesting that genetic factors, among others, might be involved. Thus, a pilot study exploring the feasibility of genetic analysis of blood spots from these medical records was conducted to investigate and enhance the understanding of goiter development, potentially identify genetic variations, and explore the influence of dietary habits and other environmental stimuli on the disease.Blood prints from goiter patients’ enlarged organs were collected per decade from
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General HCPsTweet
-
Mashup Score: 0Towards genomic medicine: a tailored next-generation sequencing panel for hydroxyurea pharmacogenomics in Tanzania - BMC Medical Genomics - 5 month(s) ago
Background Pharmacogenomics of hydroxyurea is an important aspect in the management of sickle cell disease (SCD), especially in the era of genomic medicine. Genetic variations in loci associated with HbF induction and drug metabolism are prime targets for hydroxyurea (HU) pharmacogenomics, as these can significantly impact the therapeutic efficacy and safety of HU in SCD patients. Methods This study involved designing of a custom panel targeting BCL11A, ARG2, HBB, HBG1, WAC, HBG2, HAO2, MYB, SAR1A, KLF10, CYP2C9, CYP2E1 and NOS1 as potential HU pharmacogenomics targets. These genes were selected based on their known roles in HbF induction and HU metabolism. The panel was designed using the Illumina Design Studio (Illumina, San Diego, CA, USA) and achieved a total coverage of 96% of all genomic targets over a span of 51.6 kilobases (kb). This custom panel was then sequenced using the Illumina MiSeq platform to ensure high coverage and accuracy. Results We are reporting a successfully de
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General HCPsTweet
-
Mashup Score: 3A systematic analysis of deep learning in genomics and histopathology for precision oncology - BMC Medical Genomics - 5 month(s) ago
Background Digitized histopathological tissue slides and genomics profiling data are available for many patients with solid tumors. In the last 5 years, Deep Learning (DL) has been broadly used to extract clinically actionable information and biological knowledge from pathology slides and genomic data in cancer. In addition, a number of recent studies have introduced multimodal DL models designed to simultaneously process both images from pathology slides and genomic data as inputs. By comparing patterns from one data modality with those in another, multimodal DL models are capable of achieving higher performance compared to their unimodal counterparts. However, the application of these methodologies across various tumor entities and clinical scenarios lacks consistency. Methods Here, we present a systematic survey of the academic literature from 2010 to November 2023, aiming to quantify the application of DL for pathology, genomics, and the combined use of both data types. After filte
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General HCPsTweet
-
Mashup Score: 3A systematic analysis of deep learning in genomics and histopathology for precision oncology - BMC Medical Genomics - 8 month(s) ago
Background Digitized histopathological tissue slides and genomics profiling data are available for many patients with solid tumors. In the last 5 years, Deep Learning (DL) has been broadly used to extract clinically actionable information and biological knowledge from pathology slides and genomic data in cancer. In addition, a number of recent studies have introduced multimodal DL models designed to simultaneously process both images from pathology slides and genomic data as inputs. By comparing patterns from one data modality with those in another, multimodal DL models are capable of achieving higher performance compared to their unimodal counterparts. However, the application of these methodologies across various tumor entities and clinical scenarios lacks consistency. Methods Here, we present a systematic survey of the academic literature from 2010 to November 2023, aiming to quantify the application of DL for pathology, genomics, and the combined use of both data types. After filte
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General HCPsTweet
-
Mashup Score: 3A systematic analysis of deep learning in genomics and histopathology for precision oncology - BMC Medical Genomics - 8 month(s) ago
Background Digitized histopathological tissue slides and genomics profiling data are available for many patients with solid tumors. In the last 5 years, Deep Learning (DL) has been broadly used to extract clinically actionable information and biological knowledge from pathology slides and genomic data in cancer. In addition, a number of recent studies have introduced multimodal DL models designed to simultaneously process both images from pathology slides and genomic data as inputs. By comparing patterns from one data modality with those in another, multimodal DL models are capable of achieving higher performance compared to their unimodal counterparts. However, the application of these methodologies across various tumor entities and clinical scenarios lacks consistency. Methods Here, we present a systematic survey of the academic literature from 2010 to November 2023, aiming to quantify the application of DL for pathology, genomics, and the combined use of both data types. After filte
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General HCPsTweet
-
Mashup Score: 1
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which is characterized by the loss of both upper and lower motor neurons in the central nervous system. In a significant fraction of ALS cases – irrespective of family history- a genetic background may be identified. The genetic background of ALS shows a high variability from one ethnicity to another. The most frequent genetic cause of ALS is the repeat expansion of the C9orf72 gene. With the emergence of next-generation sequencing techniques and copy number alteration calling tools the focus in ALS genetics has shifted from disease causing genes and mutations towards genetic susceptibility and risk factors.In this review we aimed to summarize the most widely recognized and studied ALS linked repeat expansions and copy number variations other than the hexanucleotide repeat expansion in the C9orf72 gene. We compare and contrast their involvement and phenotype modifying roles in ALS among different populations.
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General HCPsTweet
-
Mashup Score: 8
Background Diabetic foot ulcers (DFU) are among the fastest-growing diseases worldwide. Recent evidence has emphasized the critical role of microRNA (miRNA)-mRNA networks in various chronic wounds, including DFU. In this study, we aimed to clarify the miRNA-mRNA axes associated with the occurrence of DFU. Methods Expression profiles of miRNAs and mRNAs were extracted from the Gene Expression Omnibus. Differentially expressed genes and differentially expressed miRNAs were identified, and miRNA-mRNA regulatory axes were constructed through integrated bioinformatics analyses. We validated the miRNA-mRNA axes using quantitative real-time PCR (qPCR) and dual-luciferase reporter assays. We conducted an immune infiltration analysis and confirmed the bioinformatics results using immunofluorescence staining. Single-sample gene set enrichment analysis (ssGSEA) was used to analyze the metabolic mechanisms. Results miR-182-5p-CHL1/MITF and miR-338-3p-NOVA1 interactions were identified using in sil
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General HCPsTweet
-
Mashup Score: 2A phenome-wide approach to identify causal risk factors for deep vein thrombosis - BMC Medical Genomics - 1 year(s) ago
Deep vein thrombosis (DVT) is the formation of a blood clot in a deep vein. DVT can lead to a venous thromboembolism (VTE), the combined term for DVT and pulmonary embolism, a leading cause of death and disability worldwide. Despite the prevalence and associated morbidity of DVT, the underlying causes are not well understood. Our aim was to leverage publicly available genetic summary association statistics to identify causal risk factors for DVT. We conducted a Mendelian randomization phenome-wide association study (MR-PheWAS) using genetic summary association statistics for 973 exposures and DVT (6,767 cases and 330,392 controls in UK Biobank). There was evidence for a causal effect of 57 exposures on DVT risk, including previously reported risk factors (e.g. body mass index—BMI and height) and novel risk factors (e.g. hyperthyroidism and varicose veins). As the majority of identified risk factors were adiposity-related, we explored the molecular link with DVT by undertaking a two-sam
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine News, General Journals & SocietTweet
-
Mashup Score: 1Mendelian randomization study confirms causal relationship between myopia and vitreous disorders - BMC Medical Genomics - 1 year(s) ago
Purpose This study aims to investigate the potential bidirectional causal relationship between myopia and vitreous disorders from a genetic perspective, as vitreous disorders have been found to be closely associated with myopia development. Methods To achieve this, a two-sample Mendelian randomization (MR) design was employed. The study utilized pooled statistics from independent genome-wide association studies. Myopia was chosen as the exposure factor, while five different vitreous disorders were considered as outcomes. The primary analytical method was the inverse variance weighting (IVW) method, supplemented by sensitivity analysis. Results The study yielded significant findings indicating a positive association between myopia and vitreous disorders. The genetic prediction of myopia consistently demonstrated a positive correlation with vitreous disorders, as evidenced by IVW (odds ratio [OR] = 18.387; P < 0.01), MR Egger (OR = 2784.954; P < 0.01), weighted median (OR = 30.284; P < 0
Source: bmcmedgenomics.biomedcentral.comCategories: General Medicine Journals and Societies, Latest HeadlinesTweet
A study in #BMCMedGenomics explores how iodine fortification programs have reduced goiter and thyroid cancer in Switzerland and Germany. Using medical records from 1929-1989, it sheds light on genetic and environmental factors affecting thyroid health. https://t.co/T4UykFRNQe